Package 'ModEstM'

Title: Mode Estimation, Even in the Multimodal Case
Description: Function ModEstM() is the only one of this package, it estimates the modes of an empirical univariate distribution. It relies on the stats::density() function, even for input control. Due to very good performance of the density estimation, computation time is not an issue. The multiple modes are handled using dplyr::group_by(). For conditions and rates of convergences, see Eddy (1980) <doi:10.1214/aos/1176345080>.
Authors: Jerome Collet [aut, cre]
Maintainer: Jerome Collet <[email protected]>
License: GPL-3
Version: 0.0.1
Built: 2025-03-08 02:30:15 UTC
Source: https://github.com/cran/ModEstM

Help Index


Computes the modes, i.e. the local maxima fo the density function for a given empirical distribution

Description

Computes the modes, i.e. the local maxima fo the density function for a given empirical distribution

Usage

ModEstM(x, ...)

Arguments

x

: the random values

...

: other parameters, passed to density. The main use of this feature is to increase "adjust" in order to suppress spurious local density maxima.

Value

a list of the modes, in decreasing order of the corresponding density. It allows to suppress the less significant modes, if necessary.

Examples

require(dplyr)

x1 <- c(rbeta(1000, 23, 4))
x2 <- c(rbeta(1000, 23, 4), rbeta(1000, 4, 16))

Distribs <-
  rbind(data.frame(case = 1, XX = x1), data.frame(case = 2, XX = x2))

Adjust <- 1

Modes <- Distribs |> 
  group_by(case) |> 
  summarise(mode = ModEstM(XX, adjust = Adjust))
Modes$case
Modes$mode

ChosenCase <- 2

values <- Distribs |>
  filter(case == ChosenCase) |> 
  pull(XX)
plot(density(values, adjust = Adjust))
abline(v = Modes |> filter(case == ChosenCase) |> pull(mode) |> unlist())